An inverse problem for a quasilinear convection–diffusion equation

نویسندگان

چکیده

We study the inverse problem of recovering a semilinear diffusion term $a(t,\lambda)$ as well quasilinear convection $\mathcal B(t,x,\lambda,\xi)$ in nonlinear parabolic equation $$\partial_tu-\textrm{div}(a(t,u) \nabla u)+\mathcal B(t,x,u,\nabla u)\cdot\nabla u=0, \quad \mbox{in}\ (0,T)\times\Omega,$$ given knowledge flux moving quantity associated with different sources applied at boundary domain. This that is modeled by solution dependent parameters $a$ and B$ has many physical applications related to various classes cooperative interactions or complex mixing processes. Our main result states that, under suitable assumptions, it possible fully recover B$. The recovery based on idea solutions linearized singularities near $\partial \Omega$. proof higher order linearization reduce density property for certain anisotropic products equation. show this constructing sufficiently smooth geometric optic concentrating rays $\Omega$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An Inverse Problem for the Telegraph Equation

This paper deals with the problem of state estimation for a hyperbolic equation in the presence of unknown, but bounded disturbances, on the basis of information from sensors with finite-dimensional outputs. The object of investigation is the hyperbolic telegraph equation with energy dissipation. Observability properties similar to those introduced earlier for parabolic systems ([8]) are checke...

متن کامل

A modified VIM for solving an inverse heat conduction problem

In this paper, we will use a modified  variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at  are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...

متن کامل

An Inverse Problem for the Heat Equation

Let ut = uxx − q(x)u, 0 ≤ x ≤ 1, t > 0, u(0, t) = 0, u(1, t) = a(t), u(x, 0) = 0, where a(t) is a given function vanishing for t > T , a(t) 6≡ 0, ∫ T 0 a(t)dt < ∞. Suppose one measures the flux ux(0, t) := b0(t) for all t > 0. Does this information determine q(x) uniquely? Do the measurements of the flux ux(1, t) := b(t) give more information about q(x) than b0(t) does? The above questions are ...

متن کامل

Inverse Problem for an Inhomogeneous Schrödinger Equation * †

Let (− k 2)u = −u + q(x)u − k 2 u = δ(x), x ∈ R, ∂u ∂|x| − iku → 0, |x| → ∞. Assume that the potential q(x) is real-valued and compactly supported: q(x) = q(x), q(x) = 0 for |x| ≥ 1, 1 −1 |q|dx < ∞, and that q(x) produces no bound states. Let u(−1, k) and u(1, k) ∀k > 0 be the data. Theorem.Under the above assumptions these data determine q(x) uniquely.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2022

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2022.112921